اضافه کردن به علاقه‌مندی‌ها

نویسنده(ها)

،

محل انتشار

یازدهمین کنفرانس سالانه انجمن کامپیوتر ایران

اطلاعات انتشار

سال

صفحات

۴ صفحه

کلمات کلیدی

Data Mining، Associations Rule mining، apriori، sampling، FP، growth

In this study a new and fast approach is presented for mining association rule. It is a hybrid approach based on sampling algorithm which uses FP–Growth to find frequent itemset in sample data. This method neglect candidate generation and test due to FP–Tree projection of sample data. For the main memory limitation problem i.e. loading sample data and representing FPTree structure a useful technique is proposed. Both theoretical and experimental evaluations show that the approach is faster than Apriori–based sampling by orders of magnitude. In addition experimental evaluation shows that the approach is more efficient when the minimum support threshold is reduced.<\div>

راهنمای دریافت مقاله‌ی «Sampling large database for association rules without candidate generation» در حال تکمیل می‌باشد.

دریافت فایل PDF

۴۴۰۰ تومان

دریافت فایل Word + PDF

۵۶۰۰ تومان

ارتباط با ما

لینک‌های مفید