اضافه کردن به علاقه‌مندی‌ها

محل انتشار

بیستمین کنفرانس مهندسی برق ایران

اطلاعات انتشار

سال

صفحات

۴ صفحه

Ideal binary mask speech enhancement is shown to increase the speech quality as well as speech intelligibility. But, this property depends highly on the accurate separation ofspeech and masker time–frequency units of the input spectrum, which is a difficult task in real situations. Ordinary binary maskmethods are single–microphone methods and so, can obtain little information from the environment. In this paper, we devise a two–microphone method that uses a classifier to distinguishspeech–dominated and masker–dominated time–frequency units. The classifier uses simply computable two–microphone featureswhich enable it to be used in real–time scenarios. These proposed features empower the classifier to reach toclassification accuracies near 80%. This high accuracy in turn, empowers the Ideal binary mask mthod to obtain higher SNRI and NPLR values in comparison to state–of–the–art noisereduction methods. These results indicate that the proposed two–microphone features have high information content for speech\masker separation.<\div>

راهنمای دریافت مقاله‌ی «Two–Microphone Speech Enhancement Using a Learned Binary Mask» در حال تکمیل می‌باشد.

دریافت فایل PDF

۴۴۰۰ تومان

دریافت فایل Word + PDF

۵۶۰۰ تومان