توجه: محتویات این صفحه به صورت خودکار پردازش شده و مقاله‌های نویسندگانی با تشابه اسمی، همگی در بخش یکسان نمایش داده می‌شوند.
۱Some relationship between G–frames and frames
نویسنده(ها): ،
اطلاعات انتشار: Sahand Communications in Mathematical Analysis، دوم،شماره۱، ۲۰۱۵، سال
تعداد صفحات: ۷
In this paper we proved that every g–Riesz basis for Hilbert space H with respect to K by adding a condition is a Riesz basis for Hilbert B(K)–module B(H,K). This is an extension of [A. Askarizadeh,M. A. Dehghan, {\em G–frames as special frames}, Turk. J. Math., 35, (2011) 1–11]. Also, we derived similar results for g–orthonormal and orthogonal bases. Some relationships between dual frame, dual g–frame and exact frame and exact g–frame are presented too.

۲Construction of continuous g–frames and continuous fusion frames
نویسنده(ها): ،
اطلاعات انتشار: Sahand Communications in Mathematical Analysis، چهارم،شماره۱، ۲۰۱۶، سال
تعداد صفحات: ۱۳
A generalization of the known results in fusion frames and g–frames theory to continuous fusion frames which defined by M. H. Faroughi and R. Ahmadi, is presented in this study. Continuous resolution of the identity (CRI) is introduced, a new family of CRI is constructed, and a number of reconstruction formulas are obtained. Also, new results are given on the duality of continuous fusion frames in Hilbert spaces.
نمایش نتایج ۱ تا ۲ از میان ۲ نتیجه