توجه: محتویات این صفحه به صورت خودکار پردازش شده و مقاله‌های نویسندگانی با تشابه اسمی، همگی در بخش یکسان نمایش داده می‌شوند.
۱ERP success prediction: An artificial neural network approach
نویسنده(ها): ،
اطلاعات انتشار: Scientia Iranica، بيستم،شماره۳، ۲۰۱۳، سال
تعداد صفحات: ۱۰
The Enterprise Resource Planning system (ERP) has been pointed out as a new information systems paradigm. However, achieving a proper level of ERP success relies on a variety of factors that are related to an organization or project environment. In this paper, the idea of predicting ERP post–implementation success based on organizational profiles has been discussed. As with the need to create the expectations of organizations of ERP, an expert system was developed by exploiting the Artificial Neural Network (ANN) method to articulate the relationships between some organizational factors and ERP success. The expert system role is in preparation to obtain data from the new enterprises that wish to implement ERP, and to predict the probable system success level. To this end, factors of organizational profiles are recognized and an ANN model is developed. Then, they are validated with 171 surveyed data obtained from Middle East–located enterprises that experienced ERP. The trained expert system predicts, with an average correlation coefficient of 0.744, which is respectively high, and supports the idea of dependency of ERP success on organizational profiles. Besides, a total correct classification rate of 0.685 indicates good prediction power, which can help firms predict ERP success before system implementation.
نمایش نتایج ۱ تا ۱ از میان ۱ نتیجه