توجه: محتویات این صفحه به صورت خودکار پردازش شده و مقاله‌های نویسندگانی با تشابه اسمی، همگی در بخش یکسان نمایش داده می‌شوند.
۱On the k–nullity foliations in Finsler geometry
نویسنده(ها): ،
اطلاعات انتشار: Bulletin of Iranian Mathematical Society، سي و هفتم،شماره۴(پياپي ۷۶)، ۲۰۱۱، سال
تعداد صفحات: ۱۸
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$–forms on the bundle of non–zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$–nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive and each maximal integral manifold is totally geodesic. Characterization of the $k$–nullity foliation is given, as well as some results concerning constancy of the flag curvature, and completeness of their integral manifolds, providing completeness of $(M,F)$. The introduced $k$–nullity space is a natural extension of nullity space in Riemannian geometry, introduced by Chern and Kuiper and enlarged to Finsler setting by Akbar–Zadeh and contains it as a special case.

۲On quasi–Einstein Finsler spaces‎
نویسنده(ها): ،
اطلاعات انتشار: Bulletin of Iranian Mathematical Society، چهلم،شماره۴(پياپي ۹۰)، ۲۰۱۴، سال
تعداد صفحات: ۱۰
The notion of quasi–Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces . Quasi–Einstein metrics serve also as solution to the Ricci flow equation . Here , the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi–Einstein Finsler metric is defined . In compact case , it is proved that the quasi–Einstein metrics are solutions to the Finslerian Ricci flow and conversely , certain form of solutions to the Finslerian Ricci flow are quasi–Einstein Finsler metrics .
نمایش نتایج ۱ تا ۲ از میان ۲ نتیجه