توجه: محتویات این صفحه به صورت خودکار پردازش شده و مقاله‌های نویسندگانی با تشابه اسمی، همگی در بخش یکسان نمایش داده می‌شوند.
۱A Collocation Method to the Solution of Nonlinear Fredholm–Hammerstein Integral and Integro–differential Equations
نویسنده(ها): ،
اطلاعات انتشار: Journal of Hyperstructures، دوم،شماره۱، ۲۰۱۳، سال
تعداد صفحات: ۱۵
This paper presents a computational technique for the solution of the nonlinear Fredholm Hammerstein integral and integro–differential equations. A hybrid of block–pulse functions and the second kind Chebyshev polynomials (hereafter called as HBC) is used to approximate the nonlinear Fredholm–Hammerstein integral and integro differential equations. The main properties of HBC are presented. Also, the operational matrix of integration together with the Newton–Cotes nodes are applied to reduce the computation of the nonlinear Fredholm Hammerstein integral and integro–differential equations into some algebraic equations. The efficiency and accuracy of the proposed method have shown by three numerical examples.

۲Using modified two–dimensional block–pulse functions for the numerical solution of nonlinear two–dimensional Volterra integral equations
نویسنده(ها): ،
اطلاعات انتشار: Journal of Hyperstructures، سوم،شماره۱، ۲۰۱۴، سال
تعداد صفحات: ۱۳
In this paper, the Modied two–dimensional block–pulse functions (M2D–BFs) are used as a new set of basis functions for expanding two–dimensional functions. The main properties of M2D–BFs are determined and an operational matrix for integration obtained. M2D–BFs are used to solve nonlinear two–dimensional Volterra integral equations of the rst kind. Some theorems are included to show convergence and advantage of the method. Finally, numerical example is presented to show the efciency and accuracy of the method.

۳Application of modified hat functions for solving nonlinear quadratic integral equations
نویسنده(ها): ،
اطلاعات انتشار: Iranian Journal of Numerical Analysis and Optimization، ششم،شماره۲، ۲۰۱۶، سال
تعداد صفحات: ۲۰
A numerical method to solve nonlinear quadratic integral equations (QIE) is presented in this work. The method is based upon modification of hat functions (MHFs) and their operational matrices. By using this approach and the collocation points, solving the nonlinear QIE reduces to solve a nonlinear system of algebraic equations. The proposed method does not need any integration for obtaining the constant coefficients. Hence, it can be applied in a simple and fast technique. Convergence analysis and associated theorems are considered. Some numerical examples illustrate the accuracy and computational efficiency of the proposed method.
نمایش نتایج ۱ تا ۳ از میان ۳ نتیجه