توجه: محتویات این صفحه به صورت خودکار پردازش شده و مقاله‌های نویسندگانی با تشابه اسمی، همگی در بخش یکسان نمایش داده می‌شوند.
۱Numerical solution of stiff systems of differential equations arising from chemical reactions
اطلاعات انتشار: Iranian Journal of Numerical Analysis and Optimization، چهارم،شماره۱، ۲۰۱۴، سال
تعداد صفحات: ۱۵
Long time integration of large stiff systems of initial value problems, arising from chemical reactions, demands efficient methods with good accuracy and extensive absolute stability region. In this paper, we apply second derivative general linear methods to solve some stiff chemical problems such as chemical Akzo Nobel problem, HIRES problem and OREGO problem.

۲High order second derivative methods with Runge––Kutta stability for the numerical solution of stiff ODEs
نویسنده(ها): ،
اطلاعات انتشار: Iranian Journal of Numerical Analysis and Optimization، پنجم،شماره۲، ۲۰۱۵، سال
تعداد صفحات: ۱۰
We describe the construction of second derivative general linear methods (SGLMs) of orders five and six . We will aim for methods which are A––stable and have Runge––Kutta stability property . Some numerical results are given to show the efficiency of the constructed methods in solving stiff initial value problems .

۳Sequential second derivative general linear methods for stiff systems
نویسنده(ها): ، ،
اطلاعات انتشار: Bulletin of Iranian Mathematical Society، چهلم،شماره۱(پياپي ۸۷)، ۲۰۱۴، سال
تعداد صفحات: ۱۸
Second derivative general linear methods (SGLMs) as an extension of general linear methods (GLMs) have been introduced to improve the stability and accuracy properties of GLMs . The coefficients of SGLMs are given by six matrices , instead of four matrices for GLMs , which are obtained by solving nonlinear systems of order and usually Runge––Kutta stability conditions . In this paper , we introduce a technique for construction of an special case of SGLMs which decreases the complexity of finding coefficients matrices .
نمایش نتایج ۱ تا ۳ از میان ۳ نتیجه