توجه: محتویات این صفحه به صورت خودکار پردازش شده و مقاله‌های نویسندگانی با تشابه اسمی، همگی در بخش یکسان نمایش داده می‌شوند.
۱Binary Bargmann symmetry constraint associated with 3 × 3 discrete matrix spectral problem
اطلاعات انتشار: Journal of Nonlinear Sciences and Applications، هشتم،شماره۵، ۲۰۱۵، سال
تعداد صفحات: ۱۱
Based on the nonlinearization technique, a binary Bargmann symmetry constraint associated with a new discrete 3×3 matrix eigenvalue problem, which implies that there exist infinitely many common commuting symmetries and infinitely many common commuting conserved functionals, is proposed. A new symplectic map of the Bargmann type is obtained through binary nonlinearization of the discrete eigenvalue problem and its adjoint one. The generating function of integrals of motion is obtained, by which the symplectic map is further proved to be completely integrable in the Liouville sense. c⃝ 2015 All rights reserved.
نمایش نتایج ۱ تا ۱ از میان ۱ نتیجه