توجه: محتویات این صفحه به صورت خودکار پردازش شده و مقاله‌های نویسندگانی با تشابه اسمی، همگی در بخش یکسان نمایش داده می‌شوند.
۱Algorithms for finding minimum norm solution of equilibrium and fixed point problems for nonexpansive semigroups in Hilbert spaces
نویسنده(ها): ، ، ،
اطلاعات انتشار: Journal of Nonlinear Sciences and Applications، نهم،شماره۶، ۲۰۱۶، سال
تعداد صفحات: ۱۷
In this paper, we introduce two general algorithms (one implicit and one explicit) for finding a common element of the set of an equilibrium problem and the set of common fixed points of a nonexpansive semigroup {T(s)}s≥0 in Hilbert spaces. We prove that both approaches converge strongly to a common element x∗ of the set of the equilibrium points and the set of common fixed points of {T(s)}s≥0. Such common element x∗ is the unique solution of some variational inequality, which is the optimality condition for some minimization problem. As special cases of the above two algorithms, we obtain two schemes which both converge strongly to the minimum norm element of the set of the equilibrium points and the set of common fixed points of {T(s)}s≥0. The results obtained in the present paper improve and extend the corresponding results by Cianciaruso et al. [F. Cianciaruso, G. Marino, L. Muglia, J. Optim. Theory. Appl., 146 (2010), 491–509] and many others.
نمایش نتایج ۱ تا ۱ از میان ۱ نتیجه