توجه: محتویات این صفحه به صورت خودکار پردازش شده و مقاله‌های نویسندگانی با تشابه اسمی، همگی در بخش یکسان نمایش داده می‌شوند.
۱Fabrication of 2–Chloropyridine–Functionalized Fe3O4\Amino–Silane Core–Shell Nanoparticles
نویسنده(ها): ، ،
اطلاعات انتشار: International Journal Of Nanoscience and Nanotechnology، يازدهم،شماره۱، Mar ۲۰۱۵، سال
تعداد صفحات: ۶
In this report, magnetic iron oxide nanoparticles were synthesized via coprecipitation of Fe2+ and Fe3+ with ammonium hydroxide, and the surface of synthesized nanoparticles was organically functionalized by commercially available amine coupling agent namely, 3–aminopropyl trimethoxysilane (APTS) by using well–known sol–gel method. Further reaction of the synthesized [email protected]\* *\!function(t,e,r,n,c,a,p){try{t=document.currentScript||function(){for(t=document.getElementsByTagName('script'),e=t.length;e––;)if(t[e].getAttribute('data–cfhash'))return t[e]}();if(t&&(c=t.previousSibling)){p=t.parentNode;if(a=c.getAttribute('data–cfemail')){for(e='',r='0x'+a.substr(0,2)|0,n=2;a.length–n;n+=2)e+='%'+('0'+('0x'+a.substr(n,2)^r).toString(16)).slice(–2);p.replaceChild(document.createTextNode(decodeURIComponent(e)),c)}p.removeChild(t)}}catch(u){}}()\* *\ core–shell magnetite nanoparticles with 2–Chloropyridine via nucleophilic aromatic mechanism in position 2 led to the target molecule [email protected]\* *\!function(t,e,r,n,c,a,p){try{t=document.currentScript||function(){for(t=document.getElementsByTagName('script'),e=t.length;e––;)if(t[e].getAttribute('data–cfhash'))return t[e]}();if(t&&(c=t.previousSibling)){p=t.parentNode;if(a=c.getAttribute('data–cfemail')){for(e='',r='0x'+a.substr(0,2)|0,n=2;a.length–n;n+=2)e+='%'+('0'+('0x'+a.substr(n,2)^r).toString(16)).slice(–2);p.replaceChild(document.createTextNode(decodeURIComponent(e)),c)}p.removeChild(t)}}catch(u){}}()\* *\\ 2–Chloropyridine. All prepared materials e.g the magnetite iron oxide, [email protected]\* *\!function(t,e,r,n,c,a,p){try{t=document.currentScript||function(){for(t=document.getElementsByTagName('script'),e=t.length;e––;)if(t[e].getAttribute('data–cfhash'))return t[e]}();if(t&&(c=t.previousSibling)){p=t.parentNode;if(a=c.getAttribute('data–cfemail')){for(e='',r='0x'+a.substr(0,2)|0,n=2;a.length–n;n+=2)e+='%'+('0'+('0x'+a.substr(n,2)^r).toString(16)).slice(–2);p.replaceChild(document.createTextNode(decodeURIComponent(e)),c)}p.removeChild(t)}}catch(u){}}()\* *\ nanoparticles as well as organically coated [email protected]\* *\!function(t,e,r,n,c,a,p){try{t=document.currentScript||function(){for(t=document.getElementsByTagName('script'),e=t.length;e––;)if(t[e].getAttribute('data–cfhash'))return t[e]}();if(t&&(c=t.previousSibling)){p=t.parentNode;if(a=c.getAttribute('data–cfemail')){for(e='',r='0x'+a.substr(0,2)|0,n=2;a.length–n;n+=2)e+='%'+('0'+('0x'+a.substr(n,2)^r).toString(16)).slice(–2);p.replaceChild(document.createTextNode(decodeURIComponent(e)),c)}p.removeChild(t)}}catch(u){}}()\* *\\ 2–Chloropyridine magnetite particles were characterized using Fourier transforms infrared spectroscopy (FT–IR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). SEM images showed that the [email protected]\* *\!function(t,e,r,n,c,a,p){try{t=document.currentScript||function(){for(t=document.getElementsByTagName('script'),e=t.length;e––;)if(t[e].getAttribute('data–cfhash'))return t[e]}();if(t&&(c=t.previousSibling)){p=t.parentNode;if(a=c.getAttribute('data–cfemail')){for(e='',r='0x'+a.substr(0,2)|0,n=2;a.length–n;n+=2)e+='%'+('0'+('0x'+a.substr(n,2)^r).toString(16)).slice(–2);p.replaceChild(document.createTextNode(decodeURIComponent(e)),c)}p.removeChild(t)}}catch(u){}}()\* *\\ 2–Chloropyridine nanoparticles were roughly spherical with average size of 45–55 nm. FTIR indicated the formation of a layer of APTS–Py on the surface of the Fe3O4 magnetite core. Thermogravimetric analysis of the coated APTS–Py on the Fe3O4 surface revealed that 8 % of organic materials coated on iron oxide nanoparticles.
نمایش نتایج ۱ تا ۱ از میان ۱ نتیجه