اضافه کردن به علاقه‌مندی‌ها

نویسنده(ها)

،

محل انتشار

چهارمین کنفرانس بین المللی مقاوم سازی

اطلاعات انتشار

سال

صفحات

۱۰ صفحه

کلمات کلیدی

Dynamic analysis، numerical approximation، wavelet، B، spline.

Wavelets are mathematical functions that cut up data into different frequency components, and then study each component with a resolution matched to its scale. Wavelets were developed independently in the fields of mathematics, quantum physics, electrical engineering, and seismic geology. Interchanges between these fields during the last ten years have led to many new wavelet applications such as image compression, turbulence, human vision, radar, and earthquake prediction. In this paper, we introduce a procedure using B–spline wavelet basis functions to solve dynamic equation of motion. In the proposed approach, a straightforward formulation was derived from the approximation of the displacement function of the system with B–spline wavelet basis. In this way, B–spline wavelet matrix is derived and applied in dynamic analysis. The validity and effectiveness of the proposed method is verified with several examples. The results were compared with some of the numerical methods such as Haar wavelet, Duhamel integration and Newark (linear acceleration).<\div>

راهنمای دریافت مقاله‌ی «The numerical solution of equation of motion using B–spline wavelet» در حال تکمیل می‌باشد.

دریافت فایل PDF

۱۳۰۰۰ تومان

دریافت فایل Word + PDF

۱۵۰۰۰ تومان