اضافه کردن به علاقه‌مندی‌ها

محل انتشار

اولین کنفرانس بین المللی مهندسی دانش، اطلاعات و نرم افزار

اطلاعات انتشار

سال

صفحات

۷ صفحه

Collaborative Filtering (CF) is one of the most successful recommendation techniques. Regardless of its success, it still suffers from some weaknesses such as data sparsity anduser cold–start problems, resulting in poor recommendation accuracy and reduced coverage. Trust–based recommendationmethods incorporate the additional information from the user's social trust network into collaborative filtering and can better solve such problems. However in these methods the level of confidence in direct and indirect trust estimations is under question. In this paper, an innovative Confidence–Aware Trust(CAT)–based recommendation approach is proposed within the CF framework. An evaluation is performed on the MovieLensdataset. Experimental results indicate that the CAT approach outperforms existing recommendation algorithms in terms of recommendation accuracy and coverage.<\div>

راهنمای دریافت مقاله‌ی «Improvement of Recommender Systems using Confidence–Aware Trust» در حال تکمیل می‌باشد.

دریافت فایل PDF

۷۰۰۰ تومان

دریافت فایل Word + PDF

۹۰۰۰ تومان